I wrote a (very long) blog post about those viral math problems and am looking for feedback, especially from people who are not convinced that the problem is ambiguous.
It’s about a 30min read so thank you in advance if you really take the time to read it, but I think it’s worth it if you joined such discussions in the past, but I’m probably biased because I wrote it :)
Starting a new comment thread (I gave up on reading all of them). I’m a high school Maths teacher/tutor. You can read my Mastodon thread about it at Order of operations thread index (I’m giving you the link to the thread index so you can just jump around whichever parts you want to read without having to read the whole thing). Includes Maths textbooks, historical references, proofs, memes, the works.
And for all the people quoting university people, this topic (order of operations) is not taught at university - it is taught in high school. Why would you listen to someone who doesn’t teach the topic? (have you not wondered why they never quote Maths textbooks?)
#DontForgetDistribution #MathsIsNeverAmbiguous
I’m curious if you actually read the whole (admittedly long) page linked in this post, or did you stop after realizing that it was saying something you found disagreeable?
What will you tell your students if they show you two different models of calculator, from the same company, where the same sequence of buttons on each produces a different result than on the other, and the user manuals for each explain clearly why they’re doing what they are? “One of these calculators is just objectively wrong, trust me on this, #MathsIsNeverAmbiguous” ?
The truth is that there are many different math notations which often do lead to ambiguities.
In the case of the notation you’re dismissing in your (hilarious!) meme here, well, outside of anglophone high schools, people don’t often encounter the obelus notation for division at all except for as a button on calculators. And there its meaning is ambiguous (as clearly explained in OP’s link).
Check out some of the other things which the “÷” symbol can mean in math!
#MathNotationsAreOftenAmbiguous
I stopped when he said it was ambiguous (it’s not, as per the rules of Maths), then scanned the rest to see if there were any Maths textbook references, and there wasn’t (as expected). Just another wrong blog.
Has literally never happened. Texas Instruments is the only brand who continues to do it wrong (and it’s right there in their manual why) - all the other brands who were doing it wrong have reverted back to doing it correctly (there’s a Youtube video about this somewhere). I have a Sharp calculator (who have literally always done it correctly) and most of my students have Casio, so it’s never been an issue.
I don’t ask them to trust me - I’m a Maths teacher, I teach them the rules of Maths. From there they can see for themselves which calculators are wrong and why. Our job as teachers is for our students to eventually not need us anymore and work things out for themselves.
Not within any region there isn’t. e.g. European countries who use a comma instead of a decimal point. If you’re in one of those countries it’s a comma, if you’re not then it’s a decimal point.
In Australia it’s the only thing we ever use, and from what I’ve seen also the U.K. (every U.K. textbook I’ve seen uses it).
Go back and read it again and you’ll see all of those examples are worded in the past tense, except for ISO, and all ISO has said is “don’t use it”, for reasons which haven’t been specified, and in any case everyone in a Maths-related position is clearly ignoring them anyway (as you would. I’ve seen them over-reach in Computer Science as well, where they also get ignored by people in the industry).
Ok so you’re saying it never happened, but then in the very next sentence you acknowledge that you know it is happening with TI today, and then also admit you know that it did happen with some other brands in the past?
But, if you had read the linked post before writing numerous comments about it, you’d see that it documents that the ambiguity actually exists among both old and currently shipping models from TI, HP, Casio, and Canon, today, and that both behaviors are intentional and documented.
There is no bug; none of these calculators is “wrong”.
Ok, this is the funniest thing I’ve read so far today, but if this is what you are teaching high school students it is also rather sad because you are doing them a disservice by teaching them that there is no ambiguity where there actually is.
If OP’s blog post is too long for you (it is quite long) i recommend reading this one instead: The PEMDAS Paradox.
By “we” do you mean high school teachers, or Australian society beyond high school? Because, I’m pretty sure the latter isn’t true, and I’m skeptical of the former. I thought generally the ÷ symbol mostly stops being used (except as a calculator button) even before high school, basically as soon as fractions are taught. Do you have textbooks where the fraction bar is used concurrently with the obelus (÷) division symbol?
You asked me what I do if my students show me 2 different answers what do I tell them, and I told you that has never happened. None of my students have ever had one of the calculators which does it wrong.
Correct. I already noted earlier (maybe with someone else) that the TI calculator manual says that they obey the Primary School order of operations, which doesn’t work with High School order of operations. i.e. when the brackets have a coefficient. The TI calculator will give a correct answer for 6/(1+2) and 6/2x(1+2), but gives a wrong answer for 6/2(1+2), and it’s in their manual why. I saw one Youtuber who was showing the manual scroll right past it! It was right there on screen why it does it wrong and she just scrolled down from there without even looking at it!
Any calculator which fails to obey The Distributive Law is wrong. It is disobeying a rule of Maths.
There actually isn’t. We use decimal points (not commas like some European countries), the obelus (not colon like some European countries), etc., so no, there is never any ambiguity. And the expression in question here follows those same notations (it has an obelus, not a colon), so still no ambiguity.
Yes, I’ve read that one before. Makes the exact same mistakes. Claims it’s ambiguous while at the same time completely ignoring The Distributive Law and Terms. I’ll even point out a specific thing (of many) where they miss the point…
ab=(axb) by definition. It’s in Cajori, it’s in today’s Maths textbooks. So a(b) isn’t interchangeable with axb, it’s only interchangeable with (axb) (or (ab) or ab). That’s one of the most common mistakes I see. You can’t remove brackets if there’s still more than 1 term left inside, but many people do and end up with a wrong answer.
I said “In Australia” (not in Australian high school), so I mean all of Australia.
Definitely is. I have never seen anyone here ever use a colon to mean divide. It’s only ever used for a ratio.
All my textbooks use both. Did you read my thread? If you use a fraction bar then that is a single term. If you use an obelus (or colon if you’re in a country which uses colon for division) then that is 2 terms. I covered all of that in my thread.
EDITED TO ADD: If you don’t use both then how do you write to divide by a fraction?