Somewhat related, back in highschool I was really enjoying chemistry class. Super fun stuff, definitely a career path. Then when we were doing the math practices, I got a question wrong that I knew I combined correctly.
I asked the teacher and she said “oh yeah that one just doesn’t follow the rules” instantly killed my enjoyment of chemistry.
Aw that’s too bad. That response I’m sure you’re paraphrasing, but “that one doesn’t follow the rules” is the best part of science.
It means our rules aren’t good enough, or we don’t understand that one well enough. Figuring it out can be an entire career of discovery. And the reasons why can be fascinating and inspiring to more discoveries!
In this case, it was probably the teacher not being knowledgeable enough to explain a more advance theory that goes beyond the simple model he was teaching. What’s sad is that the teacher didn’t take the opportunity to dig deeper with the student, it could have been very motivating for the student to feel like he found something that went beyond the normal curriculum.
High school chemistry felt less like imperfect modeling and more like alchemy that sometimes yields tangible results. I can’t remember specifics anymore but there were many moments where I was like “you’re using too many shortcuts and this doesn’t make any damn sense mathematically or dimensionally anymore”. I know real chemistry is too complex to fit a high school program, but the way it was taught really was like a soft science cosplaying as a hard science.
Also chemists would use any pressure units before they used Pa. mmHg as a unit suffers from congenital defects I can only assume stem from repeated inbreeding.
At school, I thought our understanding of chemistry was really good. Years later, I realized that complicated solutions aren’t covered by any of the equations we have. You’re can do fancy calculations, but you’re always stuck with simple solutions and standard conditions. In real life, you have to deal with super messy non-standard stuff all the time.
Top scientists end up developing semi-empirical models, or even particle simulations, and that’s the best we can do right now. Nobody fully trusts those predictions, so we’re still going to need lab experiments before making any big decisions.
The good news is that there’s still so much to discover.
You aren’t following the rules! You’re supposed to nonchalantly get the correct answer and thus discover a new rule that we nowadays know as the Galapagon Principle.
Somewhat related, back in highschool I was really enjoying chemistry class. Super fun stuff, definitely a career path. Then when we were doing the math practices, I got a question wrong that I knew I combined correctly.
I asked the teacher and she said “oh yeah that one just doesn’t follow the rules” instantly killed my enjoyment of chemistry.
Aw that’s too bad. That response I’m sure you’re paraphrasing, but “that one doesn’t follow the rules” is the best part of science.
It means our rules aren’t good enough, or we don’t understand that one well enough. Figuring it out can be an entire career of discovery. And the reasons why can be fascinating and inspiring to more discoveries!
In this case, it was probably the teacher not being knowledgeable enough to explain a more advance theory that goes beyond the simple model he was teaching. What’s sad is that the teacher didn’t take the opportunity to dig deeper with the student, it could have been very motivating for the student to feel like he found something that went beyond the normal curriculum.
Might be idea gas law.
High school chemistry felt less like imperfect modeling and more like alchemy that sometimes yields tangible results. I can’t remember specifics anymore but there were many moments where I was like “you’re using too many shortcuts and this doesn’t make any damn sense mathematically or dimensionally anymore”. I know real chemistry is too complex to fit a high school program, but the way it was taught really was like a soft science cosplaying as a hard science.
Also chemists would use any pressure units before they used Pa. mmHg as a unit suffers from congenital defects I can only assume stem from repeated inbreeding.
or it’s ochem
At school, I thought our understanding of chemistry was really good. Years later, I realized that complicated solutions aren’t covered by any of the equations we have. You’re can do fancy calculations, but you’re always stuck with simple solutions and standard conditions. In real life, you have to deal with super messy non-standard stuff all the time.
Top scientists end up developing semi-empirical models, or even particle simulations, and that’s the best we can do right now. Nobody fully trusts those predictions, so we’re still going to need lab experiments before making any big decisions.
The good news is that there’s still so much to discover.
You aren’t following the rules! You’re supposed to nonchalantly get the correct answer and thus discover a new rule that we nowadays know as the Galapagon Principle.
One of my great regrets in high school chemistry was that I was born too late to discover some pattern and have it called Liz 's Formula or whatever.
It’s similar to what I felt learning organic chemistry. That’s why I ended pursuing a career in math.