Fire is the rapid oxidation of a material. Water is 2 hydrogen and 1 oxygen. Every molecule is fully oxidized. It’s also a common byproduct of fire. Therefore, you can’t burn it, because it’s already burnt
Fire is the rapid oxidation of a material. Water is 2 hydrogen and 1 oxygen. Every molecule is fully oxidized. It’s also a common byproduct of fire. Therefore, you can’t burn it, because it’s already burnt
Furthermore, you can burn water with a strong enough oxidizer. Oxygen, despite lending its name to the word “oxidize”, is not the best oxidizer out there. That belongs to things with fluorine in it. You can burn water with pure fluorine gas to produce hydrogen fluoride and oxygen.
Don’t try this at home. Both fluorine and the resulting HF is deadky.
HF is itself a super nasty piece of work – a deadly acid that seeps through your skin and kills you from the inside.
Or Chlorine Trifluoride. That’s some “no way in hell” stuff right there.
Isn’t this the stuff that the fascists tried to weaonize in WWII, but it was too dangerous to handle and it, like, burnt down a concrete bunker or something?
For reference
https://www.science.org/content/blog-post/sand-won-t-save-you-time
The fun part about that: you can burn hydrogen with fluorine because fluorine is the best oxidizer; it’s then deadly (and caustic) because hydrogen is not the best reducer - it’s both an oxidizer and a reducer and, as a result, it’s basically middle-of-the-road for both properties. Specifically, most metals are better. So the HF will happily drop its hydrogen for many metals to oxidize (fluoridate) them instead. Lead, iron, zinc, aluminum, magnesium, and lithium will each make a way more stable fluoride than does hydrogen.
In solution (say, if you inhale HF, it’ll dissolve into the moisture in your lungs), it breaks apart into H⁺ and F⁻ ions - both of which are just straight-up electrochemically promiscuous. The pair’ll run through your lungs breaking up organic bonds like couples at an orgy.
Even so, HF doesn’t hold a candle in terms of danger (and oxidation potential) compared to fluorine peroxide / dioxygen difluoride / FOOF.
That looks like even more fun than chlorine trifluoride
There’s always a lower energy state
Flourine by itself is nothing compared to chlorine triflouride (CTF) though.
There were some ideas to use it in rockets, but, as John D. Clark put it:
There were a few successful test fires with a CTF rocket on the ground, but to avoid explosions they had go through an elaborate multiple hour long cleaning procedure, and it ended up being too expensive and dangerous.