.

  • AppleMango@kbin.social
    link
    fedilink
    arrow-up
    16
    ·
    1 year ago

    Someone else will probably explain this in a much better way, but I’ll give it a go. I’ll explain DC, AC is a bit more complex.

    Current is the flow of charge. Atoms are made up of a nucleus, surrounded by electrons. The electrons are loosely held, meaning they can travel around to other atoms.

    In simple terms, batteries have an accumulation of atoms with extra electrons which are lost more easily, meaning the electrons want to move away. This is known as electric potential. Since there is a lack of electrons (aka positive charge) in the opposite terminal of the battery, the electrons move from the negative to the positive terminal, or we say the positive charge moves from the positive to the negative terminal, through the circuit.

    Metals are known to let charge flow within them, so they are used as conducting wires in circuits. When electrons flow through the circuit, the energy with which they flow can be harnessed. Example, if we add a resistance to their path which glows, you have a bulb.

    Motors work in a different way. When current flows through a circuit, it has a magnetic effect on its surroundings, so it can interact with magnets. This is harnessed to make rotational motion. It helps if you watch videos, as the visual representation is infinitely better.

    I am also still learning, so if anyone finds any mistakes whatsoever, please do let me know. I intentionally didn’t use the falling water analogy, as that didn’t help me at all when I was learning this topic.

    • Bonehead@kbin.social
      link
      fedilink
      arrow-up
      14
      ·
      edit-2
      1 year ago

      @AppleMango

      @D-ISS-O-CIA-TED@kbin.social

      AC is actually a little easier to explain.

      Imagine you’re holding each end of a rope that is looped around a pulley. When you pull on the rope with one hand, your other hand goes in the opposite direction and the pulley turns a little bit. You’ve transfered a little bit of work to the pulley, which can be used to do other things. But “you” have only moved a little bit. You pull your stretched hand in, and you other hand goes out and the pulley does a little more work. Now do this movement 60 times a second (50 in some parts of the world), and you’ve just discovered alternating current electricity. You don’t have to move much in order to send energy over long distances, which is one of the advantages of AC over DC.

      • elscallr@kbin.social
        link
        fedilink
        arrow-up
        8
        ·
        1 year ago

        To add to this, imagine that pulley on the end is connected to another pulley through a few gears. When it spins one way, it turns the last pulley one way. When it spins the other, it meshes with another gear to turn the last pulley the same way.

        You’ve converted AC current into DC current, which you can use to drive a motor in one direction. This gearing is usually done via a series of diodes.

      • D-ISS-O-CIA-TED@kbin.socialOP
        link
        fedilink
        arrow-up
        2
        ·
        1 year ago

        So in an AC current the electrons are just jiggling back and forth? How far do they move through a wire, I’d imagine they jump like a few meters back and forth if it’s only 50/60 times per second.

      • geoffervescent@kbin.social
        link
        fedilink
        arrow-up
        2
        ·
        edit-2
        1 year ago

        I could visualize your description of this, but ONLY because I recalled this great little Steve Mould video where he talks about a really neat toy called Spintronics. It teaches electricity through the analogy of gears, ratchets, and pulleys of a “mechanical circuit.”

    • skulblaka@kbin.social
      link
      fedilink
      arrow-up
      1
      ·
      1 year ago

      What stops a battery from just equalizing its own charge internally? By which I mean, why do the electrons have to go all the way around the circuit to get to the negative terminal?

      • Ankaa@kbin.social
        link
        fedilink
        arrow-up
        4
        ·
        1 year ago

        High resistance materials between the areas of charge. Nature is inherently lazy, and will take the lower resistance path through the circuit.

      • geoffervescent@kbin.social
        link
        fedilink
        arrow-up
        2
        ·
        edit-2
        1 year ago

        Batteries have an insulated separator between the positive and negative sides. They design the battery with a particular maximum voltage in mind, so they engineer it with a separator that is always a higher resistance. Thus the electrons will only be able to make the jump when a circuit with lower resistance is formed.