I want to let you all know about what I think is one of the coolest yet most under-appreciated ways to reduce waste and improve one’s impact on the world.

A bit of background first: Every watt of electricity you use in your house turns into heat. A blender is just as efficient at turning electricity into heat as a space heater. It sounds counter-intuitive, but ask your grade school physics teacher and you’ll find that the conservation of energy is not a controversial topic in physics. If you have electric heat such as electric baseboards or space heaters (NOT heat pumps since they are >100% efficient), you can heat your house with computers and spend the exact same amount as your normal heat bill but also get some useful computational work done in the process. If you are spending 50W on a space heater, you could instead dump that 50W into your computer. You pay for and get 50W of heat either way, but only the computer does some work along the way.

So really, if you are pouring electricity into a space heater or electric baseboard heater, it’s a waste, because that same electricity could be doing some useful work.

What kind of work? Well, I donate my computer’s time to BOINC. BOINC lemmy at [email protected] . (The Berkeley Open Infrastructure for Network Computing) is a free and open-source program that has been around for decades and has delivered teraflops of computing to scientists on a daily basis for absolutely free. It runs on Windows, MacOS, Linux, even Android (just be careful about heat on Android!). You don’t need to be computer-savvy to run it.

BOINC has been used to map the universe, detect asteroids, search for aliens (remember seti@home?), fight cancer, and publish hundreds of scientific papers. The world’s largest particle accelerator (large hadron collider at CERN) even has a project you can compute for, who knows, you may find a new subatomic particle! Anybody with a computer, raspberry pi, or android can contribute their CPU or GPU to the cause and pick which projects they want to contribute to.

One of the awesome things about BOINC is that any scientists with interesting research can instantly access massive amounts of computational power for free. They don’t need time on a supercomputer or institutional backing, all they need is an interesting research concept and a spare laptop to run the server on.

I have been running BOINC for many years and find it very gratifying, I love getting to see the results. In winter, 100% of my indoor heat comes from computing for science.

    • makeasnek@lemmy.mlOP
      link
      fedilink
      English
      arrow-up
      15
      arrow-down
      1
      ·
      edit-2
      1 year ago

      Not really. Computers don’t have a linear failure rate due to wear like for example a belt in your car would. Their failure is more or less random (or bathtub shaped if you want to plot it on a graph). Silicon and motherboards are incredibly durable. Go to any electronics recycling facility and you’ll find boards which have been around for 10+ years and still work fine but are no longer relevant. What you won’t find are many functional hard drives etc manufactured the same year.

      As long as you don’t have a ton of dust built up, every other component (your HDD, your OS, the laptops hinges, the power supply, etc) in your computer will fail before the silicon (on average) and the device will become obsolete before the silicon fails. No guarantee it happens that way, but on average this is how it tends to go. And whether you ran them at 50% or 100% doesn’t matter because the causes of their failure aren’t really related to load but due to, for example, your OS getting slower over time or infected with malware, gradual overvolting/undervolting over time due to electricity not being 100% “pristine” all the time, etc. There are many people in the BOINC community who have been crunching on the same rigs 100% full throttle for a decade with no issues.

      Really the category where lifespan would start to be effected are laptops and androids which really do not have sufficient heat exhaustion to run 100% even for a few minutes and where battery lifespan decreases significantly even for “medium” amounts of heat. For laptops, you can safely run them at around 50% usage (and your efficiency in terms of computation per watt tops out at around 80% anyways though it’s always 100% efficient at generating heat). For Androids, I wouldn’t suggest running BOINC on them unless you can remove the cover and directly expose the hot parts to air.