• goosethe@lemmy.sdf.orgM
    link
    fedilink
    arrow-up
    3
    ·
    1 year ago

    Hopf Fibration: Technically, the base space of the Hopf fibration is a 2-sphere (S^2), but since the 2-sphere can be thought of as a compactified plane or a disk with an added point at infinity, it could count.

    Möbius Strip: The Möbius strip can be thought of as a fiber bundle over the circle S^1 with fibers that are intervals of the real line.

    Twisted Cylinder: Similar to a Möbius strip but with the fibers being open intervals instead of closed loops.

    The Klein Bottle: If you take S^1 as your fiber, the Klein bottle can be seen as a nontrivial fiber bundle over the circle.

    Principal Bundles: The concept of a principal G-bundle, where G is a topological group, is a generalization of fiber bundles. For instance, the frame bundle of a manifold is a principal GL(n,R)-bundle, where GL(n,R) is the general linear group of invertible matrices, and n is the dimension of the manifold. As a more specific example, consider the tangent bundle of a disk, D^2. The frame bundle of D^2 is a principal GL(2,R)-bundle over the disk.

    • CanadaPlus@lemmy.sdf.orgOP
      link
      fedilink
      arrow-up
      1
      ·
      1 year ago

      Do principle bundles not count as fiber bundles? A topological group is still a space, and GL(n, R) is even a Lie group.