Abstract from the paper in the article:

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GL109280

Large constellations of small satellites will significantly increase the number of objects orbiting the Earth. Satellites burn up at the end of service life during reentry, generating aluminum oxides as the main byproduct. These are known catalysts for chlorine activation that depletes ozone in the stratosphere. We present the first atomic-scale molecular dynamics simulation study to resolve the oxidation process of the satellite’s aluminum structure during mesospheric reentry, and investigate the ozone depletion potential from aluminum oxides. We find that the demise of a typical 250-kg satellite can generate around 30 kg of aluminum oxide nanoparticles, which may endure for decades in the atmosphere. Aluminum oxide compounds generated by the entire population of satellites reentering the atmosphere in 2022 are estimated at around 17 metric tons. Reentry scenarios involving mega-constellations point to over 360 metric tons of aluminum oxide compounds per year, which can lead to significant ozone depletion.

PS: wooden satellites can help mitigate this https://www.nature.com/articles/d41586-024-01456-z

  • tyler
    link
    fedilink
    English
    arrow-up
    6
    ·
    7 months ago

    The roughly 10-centimetre-long cube is made of magnolia-wood panels and has an aluminium frame, solar panels, circuit boards and sensors. The panels incorporate Japanese wood-joinery methods that do not rely on glue or metal fittings.

    When LignoSat plunges back to Earth, after six months to a year of service, the magnolia will incinerate completely and release only water vapour and carbon dioxide

    Huh? I’m confused.

    • Gsus4OP
      link
      fedilink
      English
      arrow-up
      8
      ·
      7 months ago

      heh, yea, the satellites are not just wood for sure, they goofed. But it’s less metals, which helps.