Day 2: Cube Conundrum


Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • Code block support is not fully rolled out yet but likely will be in the middle of the event. Try to share solutions as both code blocks and using something such as https://topaz.github.io/paste/ or pastebin (code blocks to future proof it for when 0.19 comes out and since code blocks currently function in some apps and some instances as well if they are running a 0.19 beta)

FAQ


🔒This post will be unlocked when there is a decent amount of submissions on the leaderboard to avoid cheating for top spots

🔓 Edit: Post has been unlocked after 6 minutes

  • @kartoffelsaft
    link
    37 months ago

    Did mine in Odin. Found this day’s to be super easy, most of the challenge was just parsing.

    package day2
    
    import "core:fmt"
    import "core:strings"
    import "core:strconv"
    import "core:unicode"
    
    Round :: struct {
        red: int,
        green: int,
        blue: int,
    }
    
    parse_round :: proc(s: string) -> Round {
        ret: Round
    
        rest := s
        for {
            nextNumAt := strings.index_proc(rest, unicode.is_digit)
            if nextNumAt == -1 do break
            rest = rest[nextNumAt:]
    
            numlen: int
            num, ok := strconv.parse_int(rest, 10, &numlen)
            rest = rest[numlen+len(" "):]
    
            if rest[:3] == "red" {
                ret.red = num
            } else if rest[:4] == "blue" {
                ret.blue = num
            } else if rest[:5] == "green" {
                ret.green = num
            }
        }
    
        return ret
    }
    
    Game :: struct {
        id: int,
        rounds: [dynamic]Round,
    }
    
    parse_game :: proc(s: string) -> Game {
        ret: Game
    
        rest := s[len("Game "):]
    
        idOk: bool
        idLen: int
        ret.id, idOk = strconv.parse_int(rest, 10, &idLen)
        rest = rest[idLen+len(": "):]
    
        for len(rest) > 0 {
            endOfRound := strings.index_rune(rest, ';')
            if endOfRound == -1 do endOfRound = len(rest)
    
            append(&ret.rounds, parse_round(rest[:endOfRound]))
            rest = rest[min(endOfRound+1, len(rest)):]
        }
    
        return ret
    }
    
    is_game_possible :: proc(game: Game) -> bool {
        for round in game.rounds {
            if round.red   > 12 ||
               round.green > 13 ||
               round.blue  > 14 {
                return false
            }
        }
        return true
    }
    
    p1 :: proc(input: []string) {
        totalIds := 0
    
        for line in input {
            game := parse_game(line)
            defer delete(game.rounds)
    
            if is_game_possible(game) do totalIds += game.id
        }
    
        fmt.println(totalIds)
    }
    
    p2 :: proc(input: []string) {
        totalPower := 0
    
        for line in input {
            game := parse_game(line)
            defer delete(game.rounds)
    
            minRed   := 0
            minGreen := 0
            minBlue  := 0
            for round in game.rounds {
                minRed   = max(minRed  , round.red  )
                minGreen = max(minGreen, round.green)
                minBlue  = max(minBlue , round.blue )
            }
    
            totalPower += minRed * minGreen * minBlue
        }
    
        fmt.println(totalPower)
    }