Day 8: Haunted Wasteland

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • Code block support is not fully rolled out yet but likely will be in the middle of the event. Try to share solutions as both code blocks and using something such as https://topaz.github.io/paste/ , pastebin, or github (code blocks to future proof it for when 0.19 comes out and since code blocks currently function in some apps and some instances as well if they are running a 0.19 beta)

FAQ

  • @capitalpb
    link
    English
    27 months ago

    First part was simple enough. Second part was easy logically, but after running the brute force solution with a parallel iterator from rayon and maxing out all 12 cores of this CPU, it was still taking forever. I always get tripped up by these ones that need fancy math, because although I was always good at math, I’ve never been good at looking at these problems and figuring out what kind of formula would apply. So I cheated and looked at other people’s comments for their solutions, and saw the least common multiple mentioned. This made sense to me, so I implemented it and got a result almost instantly. I hate having to look at other comments to solve these things, but I never would have came to that conclusion myself.

    The code still isn’t the cleanest, and I’d love to tidy up the parsing, but it works and I’m happy.

    https://github.com/capitalpb/advent_of_code_2023/blob/main/src/solvers/day08.rs

    impl Solver for Day08 {
        fn star_one(&self, input: &str) -> String {
            let (directions, map) = input.split_once("\n\n").unwrap();
    
            let mut route_map = HashMap::new();
    
            for line in map.lines() {
                let line = line.replace(" ", "").replace("(", "").replace(")", "");
                let (position, destinations) = line.split_once('=').unwrap();
                let (left, right) = destinations.split_once(',').unwrap();
                route_map.insert(position.to_string(), (left.to_string(), right.to_string()));
            }
    
            let mut current_position = "AAA".to_string();
            for (step, direction) in directions.chars().cycle().enumerate() {
                current_position = match direction {
                    'L' => route_map[¤t_position].0.to_string(),
                    'R' => route_map[¤t_position].1.to_string(),
                    _ => unreachable!(),
                };
    
                if current_position == "ZZZ" {
                    return (step + 1).to_string();
                }
            }
    
            unreachable!()
        }
    
        fn star_two(&self, input: &str) -> String {
            let (directions, map) = input.split_once("\n\n").unwrap();
    
            let mut route_map = HashMap::new();
    
            for line in map.lines() {
                let line = line.replace(" ", "").replace("(", "").replace(")", "");
                let (position, destinations) = line.split_once('=').unwrap();
                let (left, right) = destinations.split_once(',').unwrap();
                route_map.insert(position.to_string(), (left.to_string(), right.to_string()));
            }
    
            let positions = route_map
                .keys()
                .filter(|pos| pos.ends_with('A'))
                .collect::>();
    
            let steps = positions
                .iter()
                .filter(|pos| pos.ends_with('A'))
                .map(|pos| {
                    let mut current_position = pos.to_string();
                    for (step, direction) in directions.chars().cycle().enumerate() {
                        current_position = match direction {
                            'L' => route_map[¤t_position].0.to_string(),
                            'R' => route_map[¤t_position].1.to_string(),
                            _ => unreachable!(),
                        };
    
                        if current_position.ends_with('Z') {
                            return step + 1;
                        }
                    }
                    unreachable!()
                })
                .collect::>();
    
            steps
                .into_iter()
                .reduce(|acc, steps| acc.lcm(&steps))
                .unwrap()
                .to_string()
        }
    }