Day 11: Plutonian Pebbles
Megathread guidelines
- Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
- You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL
FAQ
- What is this?: Here is a post with a large amount of details: https://programming.dev/post/6637268
- Where do I participate?: https://adventofcode.com/
- Is there a leaderboard for the community?: We have a programming.dev leaderboard with the info on how to join in this post: https://programming.dev/post/6631465
C
Started out a bit sad that this problem really seemed to call for hash tables - either for storing counts for an iterative approach, or to memoize a recursive one.
Worried that the iterative approach would have me doing problematic O(n^2) array scans I went with recursion and a plan to memoize only the first N integers in a flat array, expecting low integers to be much more frequent (and dense) than higher ones.
After making an embarrassing amount of mistakes it worked out beautifully with N=1m (testing revealed that to be about optimal). Also applied some tail recursion shortcuts where possible.
day11 0:00.01 6660 Kb 0+1925 faults
Code
#include "common.h" /* returns 1 and splits x if even-digited, 0 otherwise */ static int split(uint64_t x, uint64_t *a, uint64_t *b) { uint64_t p; int n, i; if (!x) return 0; for (n=0, p=1; p<=x; n++, p*=10) ; if (n%2) return 0; for (i=0, p=1; i<n/2; i++, p*=10) ; *a = x/p; *b = x%p; return 1; } /* * recur() is memoized in mem[]. Testing found the size MEMZ to be optimal: * lowering siginificantly reduced hits, but raising tenfold didn't add a * single hit. */ #define MEMZ (1024*1024) static uint64_t mem[MEMZ][76]; static uint64_t recur(uint64_t v, int n) { uint64_t a,b; if (n<1 ) return 1; if (v==0) return recur(1, n-1); if (v<10) return recur(v*2024, n-1); if (v<MEMZ && mem[v][n]) return mem[v][n]; if (!split(v, &a, &b)) return recur(v*2024, n-1); return v<MEMZ ? mem[v][n] = recur(a, n-1) + recur(b, n-1) : recur(a, n-1) + recur(b, n-1); } int main(int argc, char **argv) { uint64_t p1=0,p2=0, val; if (argc > 1) DISCARD(freopen(argv[1], "r", stdin)); while (scanf(" %"SCNu64, &val) == 1) { p1 += recur(val, 25); p2 += recur(val, 75); } printf("10: %"PRId64" %"PRId64"\n", p1, p2); return 0; }
Python
I initially cached the calculate_next function but honestly number of unique numbers don’t grow that much (couple thousands) so I did not feel a difference when I removed the cache. Using a dict just blazes through the problem.
from pathlib import Path from collections import defaultdict cwd = Path(__file__).parent def parse_input(file_path): with file_path.open("r") as fp: numbers = list(map(int, fp.read().splitlines()[0].split(' '))) return numbers def calculate_next(val): if val == 0: return [1] if (l:=len(str(val)))%2==0: return [int(str(val)[:int(l/2)]), int(str(val)[int(l/2):])] else: return [2024*val] def solve_problem(file_name, nblinks): numbers = parse_input(Path(cwd, file_name)) nvals = 0 for indt, node in enumerate(numbers): last_nodes = {node:1} counter = 0 while counter<nblinks: new_nodes = defaultdict(int) for val,count in last_nodes.items(): val_next_nodes = calculate_next(val) for node in val_next_nodes: new_nodes[node] += count last_nodes = new_nodes counter += 1 nvals += sum(last_nodes.values()) return nvals
Haskell
import Data.Monoid import Control.Arrow data Tree v = Tree (Tree v) v (Tree v) -- https://stackoverflow.com/questions/3208258 memo1 f = index nats where nats = go 0 1 go i s = Tree (go (i + s) s') (f i) (go (i + s') s') where s' = 2 * s index (Tree l v r) i | i < 0 = f i | i == 0 = v | otherwise = case (i - 1) `divMod` 2 of (i', 0) -> index l i' (i', 1) -> index r i' memo2 f = memo1 (memo1 . f) blink = memo2 blink' where blink' c n | c == 0 = 1 | n == 0 = blink c' 1 | even digits = blink c' l <> blink c' r | otherwise = blink c' $ n * 2024 where digits = succ . floor . logBase 10 . fromIntegral $ n (l, r) = n `divMod` (10 ^ (digits `div` 2)) c' = pred c doBlinks n = getSum . mconcat . fmap (blink n) part1 = doBlinks 25 part2 = doBlinks 75 main = getContents >>= print . (part1 &&& part2) . fmap read . words
Rust
Part 2 is solved with recursion and a cache, which is indexed by stone numbers and remaining rounds and maps to the previously calculated expansion size. In my case, the cache only grew to 139320 entries, which is quite reasonable given the size of the result.
Solution
use std::collections::HashMap; fn parse(input: String) -> Vec<u64> { input .split_whitespace() .map(|w| w.parse().unwrap()) .collect() } fn part1(input: String) { let mut stones = parse(input); for _ in 0..25 { let mut new_stones = Vec::with_capacity(stones.len()); for s in &stones { match s { 0 => new_stones.push(1), n => { let digits = s.ilog10() + 1; if digits % 2 == 0 { let cutoff = 10u64.pow(digits / 2); new_stones.push(n / cutoff); new_stones.push(n % cutoff); } else { new_stones.push(n * 2024) } } } } stones = new_stones; } println!("{}", stones.len()); } fn expansion(s: u64, rounds: u32, cache: &mut HashMap<(u64, u32), u64>) -> u64 { // Recursion anchor if rounds == 0 { return 1; } // Calculation is already cached if let Some(res) = cache.get(&(s, rounds)) { return *res; } // Recurse let res = match s { 0 => expansion(1, rounds - 1, cache), n => { let digits = s.ilog10() + 1; if digits % 2 == 0 { let cutoff = 10u64.pow(digits / 2); expansion(n / cutoff, rounds - 1, cache) + expansion(n % cutoff, rounds - 1, cache) } else { expansion(n * 2024, rounds - 1, cache) } } }; // Save in cache cache.insert((s, rounds), res); res } fn part2(input: String) { let stones = parse(input); let mut cache = HashMap::new(); let sum: u64 = stones.iter().map(|s| expansion(*s, 75, &mut cache)).sum(); println!("{sum}"); } util::aoc_main!();
Also on github
Python
Part 1: ~2 milliseconds, Part 2: ~35 milliseconds, Total Time: ~35 milliseconds
You end up doing part 1 at the same time as part 2 but because of how Advent of Code works, you need to rerun the code after part 1 is solved. so Part 2 is technically total time.Fast Code
from time import time_ns transform_cache = {} def transform(current_stone): if current_stone == "0": res = ["1"] else: length = len(current_stone) if length % 2 == 0: mid = length // 2 res = [str(int(current_stone[:mid])), str(int(current_stone[mid:]))] else: res = [str(int(current_stone) * 2024)] transform_cache[current_stone] = res return res def main(initial_stones): stones_count = {} for stone in initial_stones: stones_count[stone] = stones_count.get(stone, 0) + 1 part1 = 0 for i in range(75): new_stones_count = {} for stone, count in stones_count.items(): for r in (transform_cache.get(stone) if stone in transform_cache else transform(stone)): new_stones_count[r] = new_stones_count.get(r, 0) + count stones_count = new_stones_count if i == 24: part1 = sum(stones_count.values()) return part1,sum(stones_count.values()) if __name__ == "__main__": with open('input', 'r') as f: input_data = f.read().replace('\r', '').replace('\n', '').split() start_time = time_ns() part_one, part_two = main(input_data) stop_time = time_ns() - start_time time_len = min(9, ((len(str(stop_time))-1)//3)*3) time_conversion = {9: 'seconds', 6: 'milliseconds', 3: 'microseconds', 0: 'nanoseconds'} print(f"Part 1: {part_one}\nPart 2: {part_two}\nProcessing Time: {stop_time / (10**time_len)} {time_conversion[time_len]}")
Stepping through this code is what made it click for me, thanks. I was really mentally locked in on “memoizing” of the transform function, instead of realizing that the transform function only needs to be applied once per stone value.
Yours is still a lot faster than my rust version, so i’ll have to work out what is happening there.
Dart
I really wish Dart had memoising built in. Maybe the new macro feature will allow this to happen, but in the meantime, here’s my hand-rolled solution.
import 'package:collection/collection.dart'; var counter_ = <(int, int), int>{}; int counter(s, r) => counter_.putIfAbsent((s, r), () => _counter(s, r)); int _counter(int stone, [int rounds = 25]) => (rounds == 0) ? 1 : next(stone).map((e) => counter(e, rounds - 1)).sum; List<int> next(int s) { var ss = s.toString(), sl = ss.length; if (s == 0) return [1]; if (sl.isOdd) return [s * 2024]; return [ss.substring(0, sl ~/ 2), ss.substring(sl ~/ 2)] .map(int.parse) .toList(); } solve(List<String> lines, [count = 25]) => lines.first.split(' ').map(int.parse).map((e) => counter(e, count)).sum;
And now we get into the days where caching really is king. My first attempt didn’t go so well, I tried to handle the full list result as one cache step, instead of individually caching the result of calculating each stone per step.
I think my original attempt is still calculating at home, but I finished up this much better version on the trip to work.
All hail public transport.C#
List<long> stones = new List<long>(); public void Input(IEnumerable<string> lines) { stones = string.Concat(lines).Split(' ').Select(v => long.Parse(v)).ToList(); } public void Part1() { var expanded = TryExpand(stones, 25); Console.WriteLine($"Stones: {expanded}"); } public void Part2() { var expanded = TryExpand(stones, 75); Console.WriteLine($"Stones: {expanded}"); } public long TryExpand(IEnumerable<long> stones, int steps) { if (steps == 0) return stones.Count(); return stones.Select(s => TryExpand(s, steps)).Sum(); } Dictionary<(long, int), long> cache = new Dictionary<(long, int), long>(); public long TryExpand(long stone, int steps) { var key = (stone, steps); if (cache.ContainsKey(key)) return cache[key]; var result = TryExpand(Blink(stone), steps - 1); cache[key] = result; return result; } public IEnumerable<long> Blink(long stone) { if (stone == 0) { yield return 1; yield break; } var str = stone.ToString(); if (str.Length % 2 == 0) { yield return long.Parse(str[..(str.Length / 2)]); yield return long.Parse(str[(str.Length / 2)..]); yield break; } yield return stone * 2024; }
Haskell
Sometimes I want something mutable, this one takes 0.3s, profiling tells me 30% of my time is spent creating new objects. :/
import Control.Arrow import Data.Map.Strict (Map) import qualified Data.Map.Strict as Map import qualified Data.Maybe as Maybe type StoneCache = Map Int Int type BlinkCache = Map Int StoneCache parse :: String -> [Int] parse = lines >>> head >>> words >>> map read memoizedCountSplitStones :: BlinkCache -> Int -> Int -> (Int, BlinkCache) memoizedCountSplitStones m 0 _ = (1, m) memoizedCountSplitStones m i n | Maybe.isJust maybeMemoized = (Maybe.fromJust maybeMemoized, m) | n == 0 = do let (r, rm) = memoizedCountSplitStones m (pred i) (succ n) let rm' = cacheWrite rm i n r (r, rm') | digitCount `mod` 2 == 0 = do let (r1, m1) = memoizedCountSplitStones m (pred i) firstSplit let (r2, m2) = memoizedCountSplitStones m1 (pred i) secondSplit let m' = cacheWrite m2 i n (r1+r2) (r1 + r2, m') | otherwise = do let (r, m') = memoizedCountSplitStones m (pred i) (n * 2024) let m'' = cacheWrite m' i n r (r, m'') where secondSplit = n `mod` (10 ^ (digitCount `div` 2)) firstSplit = (n - secondSplit) `div` (10 ^ (digitCount `div` 2)) digitCount = succ . floor . logBase 10 . fromIntegral $ n maybeMemoized = cacheLookup m i n foldMemoized :: Int -> (Int, BlinkCache) -> Int -> (Int, BlinkCache) foldMemoized i (r, m) n = (r + r2, m') where (r2, m') = memoizedCountSplitStones m i n cacheWrite :: BlinkCache -> Int -> Int -> Int -> BlinkCache cacheWrite bc i n r = Map.adjust (Map.insert n r) i bc cacheLookup :: BlinkCache -> Int -> Int -> Maybe Int cacheLookup bc i n = do sc <- bc Map.!? i sc Map.!? n emptyCache :: BlinkCache emptyCache = Map.fromList [ (i, Map.empty) | i <- [1..75]] part1 = foldl (foldMemoized 25) (0, emptyCache) >>> fst part2 = foldl (foldMemoized 75) (0, emptyCache) >>> fst main = getContents >>= print . (part1 &&& part2) . parse
Some nice monadic code patterns going on there, passing the cache around! (You might want to look into the State monad if you haven’t come across it before)
Thank you for the hint, I wouldn’t have recognized it because I haven’t yet looked into it, I might try it this afternoon if I find the time, I could probably put both the Cache and the current stone count into the monad state?
Your code as it stands is basically
State BlinkCache
written out explicitly, which is I think a natural way to structure the solution. That is, the cache is the state, and the stone count is the (monadic) return value. Good luck!
Nim
Runtime: 30-40 ms
I’m not very experienced with recursion and memoization, so this took me quite a while.Edit: slightly better version
template splitNum(numStr: string): seq[int] = @[parseInt(numStr[0..<numStr.len div 2]), parseInt(numStr[numStr.len div 2..^1])] template applyRule(stone: int): seq[int] = if stone == 0: @[1] else: let numStr = $stone if numStr.len mod 2 == 0: splitNum(numStr) else: @[stone * 2024] proc memRule(st: int): seq[int] = var memo {.global.}: Table[int, seq[int]] if st in memo: return memo[st] result = st.applyRule memo[st] = result proc countAfter(stone: int, targetBlinks: int): int = var memo {.global.}: Table[(int, int), int] if (stone,targetBlinks) in memo: return memo[(stone,targetBlinks)] if targetBlinks == 0: return 1 for st in memRule(stone): result += st.countAfter(targetBlinks - 1) memo[(stone,targetBlinks)] = result proc solve(input: string): AOCSolution[int, int] = for stone in input.split.map(parseInt): result.part1 += stone.countAfter(25) result.part2 += stone.countAfter(75)
C#
public class Day11 : Solver { private long[] data; private class TreeNode(TreeNode? left, TreeNode? right, long value) { public TreeNode? Left = left; public TreeNode? Right = right; public long Value = value; } private Dictionary<(long, int), long> generation_length_cache = []; private Dictionary<long, TreeNode> subtree_pointers = []; public void Presolve(string input) { data = input.Trim().Split(" ").Select(long.Parse).ToArray(); List<TreeNode> roots = data.Select(value => new TreeNode(null, null, value)).ToList(); List<TreeNode> last_level = roots; subtree_pointers = roots.GroupBy(root => root.Value) .ToDictionary(grouping => grouping.Key, grouping => grouping.First()); for (int i = 0; i < 75; i++) { List<TreeNode> next_level = []; foreach (var node in last_level) { long[] children = Transform(node.Value).ToArray(); node.Left = new TreeNode(null, null, children[0]); if (subtree_pointers.TryAdd(node.Left.Value, node.Left)) { next_level.Add(node.Left); } if (children.Length <= 1) continue; node.Right = new TreeNode(null, null, children[1]); if (subtree_pointers.TryAdd(node.Right.Value, node.Right)) { next_level.Add(node.Right); } } last_level = next_level; } } public string SolveFirst() => data.Select(value => GetGenerationLength(value, 25)).Sum().ToString(); public string SolveSecond() => data.Select(value => GetGenerationLength(value, 75)).Sum().ToString(); private long GetGenerationLength(long value, int generation) { if (generation == 0) { return 1; } if (generation_length_cache.TryGetValue((value, generation), out var result)) return result; TreeNode cur = subtree_pointers[value]; long sum = GetGenerationLength(cur.Left.Value, generation - 1); if (cur.Right is not null) { sum += GetGenerationLength(cur.Right.Value, generation - 1); } generation_length_cache[(value, generation)] = sum; return sum; } private IEnumerable<long> Transform(long arg) { if (arg == 0) return [1]; if (arg.ToString() is { Length: var l } str && (l % 2) == 0) { return [int.Parse(str[..(l / 2)]), int.Parse(str[(l / 2)..])]; } return [arg * 2024]; } }
Haskell
Yay, mutation! Went down the route of caching the expanded lists of stones at first. Oops.
import Data.IORef import Data.Map.Strict (Map) import Data.Map.Strict qualified as Map blink :: Int -> [Int] blink 0 = [1] blink n | s <- show n, l <- length s, even l = let (a, b) = splitAt (l `div` 2) s in map read [a, b] | otherwise = [n * 2024] countExpanded :: IORef (Map (Int, Int) Int) -> Int -> [Int] -> IO Int countExpanded _ 0 = return . length countExpanded cacheRef steps = fmap sum . mapM go where go n = let key = (n, steps) computed = do result <- countExpanded cacheRef (steps - 1) $ blink n modifyIORef' cacheRef (Map.insert key result) return result in readIORef cacheRef >>= maybe computed return . (Map.!? key) main = do input <- map read . words <$> readFile "input11" cache <- newIORef Map.empty mapM_ (\steps -> countExpanded cache steps input >>= print) [25, 75]
Does the IORef go upwards the recursion tree? If you modify the IORef at some depth of 15, does the calling function also receive the update, is there also a Non-IO-Ref?
The IORef is like a mutable box you can stick things in, so
readIORef
returns whatever was last put in it (in this case usingmodifyIORef'
). “last” makes sense here because operations are sequenced thanks to the IO monad, so yes: values get carried back up the tree to the caller. There’s alsoSTRef
for the ST monad, or I could have used the State monad which (kind of) encapsulates a single ref.