Day 12: Garden Groups
Megathread guidelines
- Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
- You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL
FAQ
- What is this?: Here is a post with a large amount of details: https://programming.dev/post/6637268
- Where do I participate?: https://adventofcode.com/
- Is there a leaderboard for the community?: We have a programming.dev leaderboard with the info on how to join in this post: https://programming.dev/post/6631465
Python
Had to rely on an external polygon library for this one. Part 1 could have been easily done without it but part 2 would be diffucult (you can even use the simplify function to count the number of straight edges in internal and external boundaries modulo checking the collinearity of the start and end of the boundary)
import numpy as np from pathlib import Path from shapely import box, union, MultiPolygon, Polygon, MultiLineString cwd = Path(__file__).parent def parse_input(file_path): with file_path.open("r") as fp: garden = list(map(list, fp.read().splitlines())) return np.array(garden) def get_polygon(plant, garden): coords = list(map(tuple, list(np.argwhere(garden==plant)))) for indc,coord in enumerate(coords): box_next = box(xmin=coord[0], ymin=coord[1], xmax=coord[0]+1, ymax=coord[1]+1) if indc==0: poly = box_next else: poly = union(poly, box_next) if isinstance(poly, Polygon): poly = MultiPolygon([poly]) return poly def are_collinear(coords, tol=None): coords = np.array(coords, dtype=float) coords -= coords[0] return np.linalg.matrix_rank(coords, tol=tol)==1 def simplify_boundary(boundary): # if the object has internal and external boundaries then split them # and recurse if isinstance(boundary, MultiLineString): coordinates = [] for b in boundary.geoms: coordinates.append(simplify_boundary(b)) return list(np.concat(coordinates, axis=0)) simple_boundary = boundary.simplify(0) coords = [np.array(x) for x in list(simple_boundary.coords)[:-1]] resolved = False while not resolved: end_side=\ np.concat([x[:,None] for x in [coords[-1], coords[0], coords[1]]], axis=1) if are_collinear(end_side.T): coords = coords[1:] else: resolved = True return coords def solve_problem(file_name): garden = parse_input(Path(cwd, file_name)) unique_plants = set(garden.flatten()) total_price = 0 discounted_total_price = 0 for plant in unique_plants: polygon = get_polygon(plant, garden) for geom in polygon.geoms: coordinates = simplify_boundary(geom.boundary) total_price += geom.area*geom.length discounted_total_price += geom.area*len(coordinates) return int(total_price), int(discounted_total_price)
Dart
Filling to find regions was easy. Counting areas was easy. Counting fences was okay. Counting sides caused me a lot of frustration as I tried and rejected a number of approaches, eventually arriving at a reasonably simple corner-counting approach. None of this was helped by all the examples lacking at least two important layouts, causing today to be the first day that I ran out of hints for wrong answers :-(.
(
corners
is where the magic happens)70 or so lines, half a second to run, so that's fine for today.
import 'dart:math'; import 'package:collection/collection.dart'; import 'package:more/more.dart'; const List<Point> n4 = [Point(0, 1), Point(0, -1), Point(1, 0), Point(-1, 0)]; List<Point> n8 = n4 + [Point(1, 1), Point(1, -1), Point(-1, 1), Point(-1, -1)]; const List<Point> c4 = [Point(0, 0), Point(0, 1), Point(1, 0), Point(1, 1)]; (Map<Point, String>, Map<Point, List<Point>>) parse(ls) { var nodes = { for (var y in 0.to(ls.length)) for (var x in 0.to(ls.first.length)) Point<num>(x, y): ls[y][x] as String }; var nexts = Map.fromEntries(nodes.keys.map((n) => MapEntry( n, n4 .map((d) => n + d) .where((d) => (nodes[d] ?? '') == nodes[n]!) .toList()))); return (nodes, nexts); } (int, Set<Point>) survey( Point here, String target, Map<Point<num>, List<Point>> nexts, [Set sofar = const {}]) { seen.add(here); var fences = 4 - nexts[here]!.length; var area = {here}; for (var f in nexts[here]!.where((e) => !seen.contains(e))) { var (fs, a) = survey(f, target, nexts, sofar.toSet()..add(f)); fences += fs; area.addAll(a); } return (fences, area); } late Set<Point> seen; List<(int, Set<Point<num>>)> costs(List<String> lines) { seen = {}; var ret = <(int, Set<Point<num>>)>[]; var (nodes, nexts) = parse(lines); var toVisit = nodes.keys.toSet(); while (toVisit.isNotEmpty) { var here = toVisit.first; toVisit.remove(here); ret.add(survey(here, nodes[here]!, nexts)); toVisit.removeAll(seen); } return ret; } Function eq = const ListEquality().equals; int corners(Set<Point> points) { var border = points.map((e) => n8.map((n) => n + e)).flattenedToSet ..addAll(points); // A corner is where a 2x2 grid contains one/three in-shape points, or // two diagonally-opposite cells var corners = 0; for (var cell in border) { var count = c4.map((e) => points.contains(e + cell)).toList(); if (count.count((e) => e) % 2 == 1) { corners += 1; } else { if (eq(count, [true, false, false, true]) || eq(count, [false, true, true, false])) { corners += 2; } } } return corners; } part1(lines) => costs(lines).map((e) => e.first * e.last.length).sum; part2(lines) => costs(lines).map((e) => corners(e.last) * e.last.length).sum;
C#
public class Day12 : Solver { private string[] data; private int width, height; private Dictionary<int, long> perimeters = []; private Dictionary<int, long> areas = []; private Dictionary<int, long> sides = []; private int region_count; public void Presolve(string input) { data = input.Trim().Split("\n").ToArray(); height = data.Length; width = data[0].Length; var graph_cc = MakeGraph(false); var cc = new ConnectedComponentsAlgorithm<Point, PointEdge>(graph_cc); cc.Compute(); var graph_all = MakeGraph(true); Dictionary<(int Component, int Y), List<int>> x_sides = []; Dictionary<(int Component, int X), List<int>> y_sides = []; var search = new UndirectedBreadthFirstSearchAlgorithm<Point, PointEdge>(graph_all); search.SetRootVertex((0, 0)); search.FinishVertex += vertex => { if (IsWithinBounds(vertex.Item1, vertex.Item2)) { int component = cc.Components[vertex]; areas.TryAdd(component, 0L); areas[component] += 1; } }; search.ExamineEdge += edge => { var (si, ti) = (IsWithinBounds(edge.Source), IsWithinBounds(edge.Target)); bool border = si != ti || cc.Components[edge.Source] != cc.Components[edge.Target]; if (si && border) { int component = cc.Components[edge.Source]; perimeters.TryAdd(component, 0L); perimeters[component] += 1; if (edge.Source.Item1 == edge.Target.Item1) { int y = Math.Min(edge.Source.Item2, edge.Target.Item2); x_sides.TryAdd((component, y), []); x_sides[(component, y)].Add(edge.Source.Item2 > edge.Target.Item2 ? edge.Source.Item1 : -edge.Source.Item1 - 5); } else { int x = Math.Min(edge.Source.Item1, edge.Target.Item1); y_sides.TryAdd((component, x), []); y_sides[(component, x)].Add(edge.Source.Item1 > edge.Target.Item1 ? edge.Source.Item2 : -edge.Source.Item2 - 5); } } }; search.Compute(); region_count = cc.ComponentCount; foreach (var side_projection in x_sides) { side_projection.Value.Sort(); sides.TryAdd(side_projection.Key.Component, 0); int last_x = int.MinValue; foreach (var x in side_projection.Value) { if (x != (last_x + 1)) sides[side_projection.Key.Component] += 1; last_x = x; } } foreach (var side_projection in y_sides) { side_projection.Value.Sort(); sides.TryAdd(side_projection.Key.Component, 0); int last_y = int.MinValue; foreach (var y in side_projection.Value) { if (y != (last_y + 1)) sides[side_projection.Key.Component] += 1; last_y = y; } } foreach (var component in Enumerable.Range(0, region_count)) { if (!areas.ContainsKey(component)) continue; } } public string SolveFirst() => Enumerable.Range(0, region_count) .Where(component => areas.ContainsKey(component)) .Select(component => areas[component] * perimeters[component]).Sum().ToString(); public string SolveSecond() => Enumerable.Range(0, region_count) .Where(component => areas.ContainsKey(component)) .Select(component => areas[component] * sides[component]).Sum().ToString(); private record struct PointEdge(Point Source, Point Target): IEdge<Point>; private IUndirectedGraph<Point, PointEdge> MakeGraph(bool with_edges_between_plots)=> new DelegateUndirectedGraph<Point, PointEdge>(GetVertices(), with_edges_between_plots? GetAllEdges : GetEdgesWithoutBorders, false); private bool IsWithinBounds(int x, int y) => x >= 0 && x < width && y >= 0 && y < height; private bool IsWithinBounds(Point p) => IsWithinBounds(p.Item1, p.Item2); private readonly (int, int)[] directions = [(-1, 0), (0, -1), (1, 0), (0, 1)]; private bool GetEdgesWithoutBorders(Point arg, out IEnumerable<PointEdge> result) { List<PointEdge> result_list = []; var (x, y) = arg; bool inside = IsWithinBounds(x, y); foreach (var (dx, dy) in directions) { var (ox, oy) = (x + dx, y + dy); if (!inside || !IsWithinBounds(ox, oy)) continue; if (data[y][x] == data[oy][ox]) result_list.Add(new(arg, (ox, oy))); } result = result_list; return true; } private bool GetAllEdges(Point arg, out IEnumerable<PointEdge> result) { List<PointEdge> result_list = []; var (x, y) = arg; foreach (var (dx, dy) in directions) { var (ox, oy) = (x + dx, y + dy); if (ox >= -1 && ox <= width && oy >= -1 && oy <= height) result_list.Add(new(arg, (ox, oy))); } result = result_list; return true; } private IEnumerable<(int, int)> GetVertices() => Enumerable.Range(-1, width + 2).SelectMany(x => Enumerable.Range(-1, height + 2).Select(y => (x, y))); }
Haskell
Detecting regions is a floodfill. For Part 2, I select all adjacent tiles that are not part of a region and group them by the direction relative to the closest region tile, then group adjacent tiles with the same direction again and count.
Edit:
Takes 0.06s
Reveal Code
import Control.Arrow import Data.Array.Unboxed (UArray) import Data.Set (Set) import Data.Map (Map) import qualified Data.List as List import qualified Data.Set as Set import qualified Data.Map as Map import qualified Data.Array.Unboxed as UArray parse :: String -> UArray (Int, Int) Char parse s = UArray.listArray ((1, 1), (n, m)) . filter (/= '\n') $ s where n = takeWhile (/= '\n') >>> length $ s m = filter (== '\n') >>> length >>> pred $ s neighborCoordinates (p1, p2) = [(p1-1, p2), (p1, p2-1), (p1, p2+1), (p1+1, p2)] allNeighbors p a = neighborCoordinates >>> filter (UArray.inRange (UArray.bounds a)) $ p regionNeighbors p a = allNeighbors p >>> filter ((a UArray.!) >>> (== pTile)) $ a where pTile = a UArray.! p floodArea :: Set (Int, Int) -> Set (Int, Int) -> UArray (Int, Int) Char -> Set (Int, Int) floodArea e o a | Set.null o = e | otherwise = floodArea e' o' a where e' = Set.union e o o' = Set.fold (Set.union . Set.fromDistinctAscList . (filter (`Set.notMember` e')) . (flip regionNeighbors a)) Set.empty o findRegions garden = findRegions' (Set.fromList . UArray.indices $ garden) garden findRegions' remainingIndices garden | Set.null remainingIndices = [] | otherwise = removedIndices : findRegions' remainingIndices' garden where removedIndices = floodArea Set.empty (Set.singleton . Set.findMin $ remainingIndices) garden remainingIndices' = Set.difference remainingIndices removedIndices perimeter region = Set.fold ((+) . length . filter (`Set.notMember` region) . neighborCoordinates) 0 region part1 rs = map (Set.size &&& perimeter) >>> map (uncurry (*)) >>> sum $ rs turnLeft ( 0, 1) = (-1, 0) -- right turnLeft ( 0,-1) = ( 1, 0) -- left turnLeft ( 1, 0) = ( 0, 1) -- down turnLeft (-1, 0) = ( 0,-1) -- up turnRight = turnLeft . turnLeft . turnLeft move (py, px) (dy, dx) = (py + dy, px + dx) tupleDelta (y1, x1) (y2, x2) = (y1-y2, x1-x2) isRegionInner region p = all (`Set.member` region) (neighborCoordinates p) groupEdges d ps | Set.null ps = [] | otherwise = collectedEdge : groupEdges d ps' where ps' = Set.difference ps collectedEdge collectedEdge = Set.union leftPoints rightPoints leftPoints = iterate (move dl) >>> takeWhile (`Set.member` ps) >>> Set.fromList $ currentPoint rightPoints = iterate (move dr) >>> takeWhile (`Set.member` ps) >>> Set.fromList $ currentPoint currentPoint = Set.findMin ps dr = turnRight d dl = turnLeft d linearPerimeter region = Map.foldr ((+) . length) 0 $ groupedEdges where edgeTiles = Set.filter (not . isRegionInner region) region regionNeighbors = List.concatMap (\ p -> map (p,). filter (`Set.notMember` region) . neighborCoordinates $ p) . Set.toList $ region groupedNeighbors = List.map (uncurry tupleDelta &&& Set.singleton . snd) >>> Map.fromListWith (Set.union) $ regionNeighbors groupedEdges = Map.mapWithKey groupEdges $ groupedNeighbors part2 rs = map (Set.size &&& linearPerimeter) >>> map (uncurry (*)) >>> sum $ rs main = getContents >>= print . (part1 &&& part2) . findRegions . parse
Haskell
This was a bit of a fiddly one. There’s probably scope for golfing it down some more, but I’ve had enough for today :3
Solution
import Control.Arrow import Data.List import Data.Map (Map) import Data.Map qualified as Map import Data.Set (Set) import Data.Set qualified as Set readInput :: String -> Map (Int, Int) Char readInput s = Map.fromList [((i, j), c) | (i, l) <- zip [0 ..] (lines s), (j, c) <- zip [0 ..] l] (i1, j1) .+. (i2, j2) = (i1 + i2, j1 + j2) (i1, j1) .-. (i2, j2) = (i1 - i2, j1 - j2) directions = [(0, 1), (1, 0), (0, -1), (-1, 0)] :: [(Int, Int)] edges = zip ps (drop 1 ps) :: [((Int, Int), (Int, Int))] where ps = [(0, 1), (1, 1), (1, 0), (0, 0), (0, 1)] regions :: Map (Int, Int) Char -> [Set (Int, Int)] regions = unfoldr (fmap (uncurry removeRegion) . Map.minViewWithKey) where removeRegion (p, t) = go Set.empty (Set.singleton p) where go r ps plots | Set.null ps = (r, plots) | otherwise = let ps' = Set.filter (\p -> plots Map.!? p == Just t) $ Set.fromList (concatMap adjacent ps) Set.\\ ps in go (Set.union r ps) ps' (Map.withoutKeys plots ps') adjacent = (`map` directions) . (.+.) boundary :: Set (Int, Int) -> Set ((Int, Int), (Int, Int)) boundary region = Set.fromList $ [ (p .+. e1, p .+. e2) | p <- Set.elems region, (d, (e1, e2)) <- zip directions edges, p .+. d `Set.notMember` region ] perimeter :: Set (Int, Int) -> [[(Int, Int)]] perimeter = unfoldr (fmap (uncurry removeChain) . Set.minView) . boundary where removeChain e@(e1, e2) es = first (e1 :) $ go [] e es go c e@(e1, e2) es = case find ((== e2) . fst) es of Nothing -> (e1 : c, es) Just e' -> go (e1 : c) e' (Set.delete e' es) countSides :: [(Int, Int)] -> Int countSides ps = length $ group $ zipWith (.-.) (drop 1 ps) ps main = do input <- readInput <$> readFile "input12" let rs = map (Set.size &&& perimeter) $ regions input print . sum $ map (\(a, p) -> a * sum (map (subtract 1 . length) p)) rs print . sum $ map (\(a, p) -> a * sum (map countSides p)) rs
Thank you for showing the floodfill-algorithm using explored/open sets, mine was hellish inefficiently, reminds me of A*.
Nim
Runtime:
7ms3.18 msPart 1: I use flood fill to count all grouped plants and keep track of each border I see.
Part 2: I use an algorithmsimilar to “merge overlapping ranges”to count spans of borders (border orientation matters) in each row and column, for each group. Resulting code (hidden under spoiler) is a little messy and not very DRY (it’s completely soaked).Edit: refactored solution, removed some very stupid code.
proc groupSpans()
proc groupSpans(borders: seq[(Vec2, Dir)]): int = ## returns number of continuous groups of cells with same Direction ## and on the same row or column var borders = borders var horiz = borders.filterIt(it[1] in {U, D}) while horiz.len > 0: var sameYandDir = @[horiz.pop()] var curY = sameYandDir[^1][0].y var curDir = sameYandDir[^1][1] for i in countDown(horiz.high, 0): if horiz[i][0].y == curY and horiz[i][1] == curDir: sameYandDir.add horiz[i] horiz.del i sameYandDir.sort((a,b)=>cmp(a[0].x, b[0].x), Descending) var cnt = 1 for i, (p,d) in sameYandDir.toOpenArray(1, sameYandDir.high): if sameYandDir[i][0].x - p.x != 1: inc cnt result += cnt var vert = borders.filterIt(it[1] in {L, R}) while vert.len > 0: var sameXandDir = @[vert.pop()] var curX = sameXandDir[^1][0].x var curDir = sameXandDir[^1][1] for i in countDown(vert.high, 0): if vert[i][0].x == curX and vert[i][1] == curDir: sameXandDir.add vert[i] vert.del i sameXandDir.sort((a,b)=>cmp(a[0].y, b[0].y), Descending) var cnt = 1 for i, (p,d) in sameXandDir.toOpenArray(1, sameXandDir.high): if sameXandDir[i][0].y - p.y != 1: inc cnt result += cnt
type Dir = enum L,R,U,D Vec2 = tuple[x,y: int] GroupData = object plantCount: int borders: seq[(Vec2, Dir)] const Adjacent: array[4, Vec2] = [(-1,0),(1,0),(0,-1),(0,1)] proc solve(input: string): AOCSolution[int, int] = let grid = input.splitLines() var visited = newSeqWith(grid.len, newSeq[bool](grid[0].len)) var groups: seq[GroupData] proc floodFill(pos: Vec2, plant: char, groupId: int) = visited[pos.y][pos.x] = true inc groups[groupId].plantCount for di, d in Adjacent: let pd: Vec2 = (pos.x+d.x, pos.y+d.y) if pd.x < 0 or pd.y < 0 or pd.x > grid[0].high or pd.y > grid.high or grid[pd.y][pd.x] != plant: groups[groupId].borders.add (pd, Dir(di)) continue if visited[pd.y][pd.x]: continue floodFill(pd, plant, groupId) for y in 0..grid.high: for x in 0..grid[0].high: if visited[y][x]: continue groups.add GroupData() floodFill((x,y), grid[y][x], groups.high) for gid, group in groups: result.part1 += group.plantCount * group.borders.len result.part2 += group.plantCount * group.borders.groupSpans()