Day 13: Claw Contraption
Megathread guidelines
- Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
- You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL
FAQ
- What is this?: Here is a post with a large amount of details: https://programming.dev/post/6637268
- Where do I participate?: https://adventofcode.com/
- Is there a leaderboard for the community?: We have a programming.dev leaderboard with the info on how to join in this post: https://programming.dev/post/6631465
I did run your code as-is in an ipython REPL to check. These were the results:
REPL session
# With unmodified `main` function & `import string` not shown In [4]: with open("inputs/day13.txt", "r") as f: ...: input_data = f.read().strip().replace(',', '').split('\n\n') ...: In [5]: part_one, part_two = main(input_data) In [6]: part_one Out[6]: 39748 In [7]: part_two Out[7]: 74926346266863 # Then I modified the function to check if x is fractional In [8]: def main(input_data): ...: part1_total_cost = 0 ...: part2_total_cost = 0 ...: for machine in input_data: ...: Ax,Ay,Bx,By,Px,Py = [ int(l[2:]) for l in machine.split() if l[-1] in string.digits ] ...: y,r = divmod((Ay * Px - Ax * Py), (Ay * Bx - Ax * By)) ...: if r == 0: ...: x = (Px - Bx * y) / Ax ...: if x % 1 == 0: ...: part1_total_cost += 3*x + y ...: y,r = divmod((Ay * (Px+10000000000000) - Ax * (Py+10000000000000)), (Ay * Bx - Ax * By)) ...: if r == 0: ...: x = ((Px+10000000000000) - Bx * y) / Ax ...: if x % 1 == 0: ...: part2_total_cost += 3*x + y ...: ...: return part1_total_cost,part2_total_cost ...: In [9]: part_one, part_two = main(input_data) In [10]: part_one Out[10]: 39748.0 In [11]: part_two Out[11]: 74478585072604.0 # Correct answer for pt 2 of my input
If you’re curious to check against my puzzle input, it’s here
Thank you again for the back & forth, and for sharing your solution!
there is exactly ONE “machine” that causes your result to be incorrect. ONLY for part 2.
Button A: X+67, Y+67 Button B: X+16, Y+73 Prize: X=4877, Y=7214
I see now what your corner case causes. so when my script solves for y first. it will be exact. BUT when you solve for x, it will be not divisible… makes sense now. I didn’t expect this. This only occurs because of part 2! so dastardly. well, that was interesting. I guess I am forced to add that extra check… rip those microsecond gains.
Ooh that is tricky of them. Good catch!