Day 18: Ram Run
Megathread guidelines
- Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
- You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL
FAQ
- What is this?: Here is a post with a large amount of details: https://programming.dev/post/6637268
- Where do I participate?: https://adventofcode.com/
- Is there a leaderboard for the community?: We have a programming.dev leaderboard with the info on how to join in this post: https://programming.dev/post/6631465
Dart
I knew keeping my search code from day 16 would come in handy, I just didn’t expect it to be so soon.
For Part 2 it finds a path, then searches for the first block that will erm block that path, and re-runs the search after that block has dropped, repeating until blocked. Simple but okay.
90 lines, half of which is my copied search method. Runs in a couple of seconds which isn’t great, but isn’t bad.
import 'dart:math'; import 'package:collection/collection.dart'; import 'package:more/more.dart'; var d4 = <Point<num>>[Point(0, 1), Point(0, -1), Point(1, 0), Point(-1, 0)]; solve(List<String> lines, int count, Point end, bool inPart1) { var blocks = (lines .map((e) => e.split(',').map(int.parse).toList()) .map((p) => Point<num>(p[0], p[1]))).toList(); var blocksSofar = blocks.take(count).toSet(); var start = Point(0, 0); Map<Point, num> fNext(Point here) => { for (var d in d4 .map((d) => d + here) .where((e) => e.x.between(start.x, end.x) && e.y.between(start.y, end.y) && !blocksSofar.contains(e)) .toList()) d: 1 }; int fHeur(Point here) => 1; bool fAtEnd(Point here) => here == end; var cost = aStarSearch<Point>(Point(0, 0), fNext, fHeur, fAtEnd); if (inPart1) return cost.first; while (cost.first > 0) { var path = cost.last.first.toSet(); count = blocks.indexed().firstWhere((e) => path.contains(e.value)).index; blocksSofar = blocks.take(count + 1).toSet(); cost = aStarSearch<Point>(Point(0, 0), fNext, fHeur, fAtEnd); } var p = blocksSofar.last; return '${p.x},${p.y}'; } part1(lines, count, end) => solve(lines, count, end, true); part2(lines, count, end) => solve(lines, count, end, false);
That search method
/// Returns cost to destination, plus list of routes to destination. /// Does Dijkstra/A* search depending on whether heuristic returns 1 or /// something better. (num, List<List<T>>) aStarSearch<T>(T start, Map<T, num> Function(T) fNext, int Function(T) fHeur, bool Function(T) fAtEnd, {multiplePaths = false}) { var cameFrom = SetMultimap<T, T>.fromEntries([MapEntry(start, start)]); var ends = <T>{}; var front = PriorityQueue<T>((a, b) => fHeur(a).compareTo(fHeur(b))) ..add(start); var cost = <T, num>{start: 0}; while (front.isNotEmpty) { var here = front.removeFirst(); if (fAtEnd(here)) { ends.add(here); continue; } var ns = fNext(here); for (var n in ns.keys) { var nCost = cost[here]! + ns[n]!; if (!cost.containsKey(n) || nCost < cost[n]!) { cost[n] = nCost; front.add(n); cameFrom.removeAll(n); cameFrom[n].add(here); } if (multiplePaths && cost[n] == nCost) cameFrom[n].add(here); } } Iterable<List<T>> routes(T h) sync* { if (h == start) { yield [h]; return; } for (var p in cameFrom[h]) { yield* routes(p).map((e) => e + [h]); } } if (ends.isEmpty) return (-1, []); var minCost = ends.map((e) => cost[e]!).min; ends = ends.where((e) => cost[e]! == minCost).toSet(); return (minCost, ends.fold([], (s, t) => s..addAll(routes(t).toList()))); }
Haskell
I did an easy optimization for part 2, but it’s not too slow without.
Solution
import Control.Monad import Data.Ix import Data.List import Data.Map qualified as Map import Data.Maybe import Data.Set (Set) import Data.Set qualified as Set readInput :: String -> [(Int, Int)] readInput = map readCoords . lines where readCoords l = let (a, _ : b) = break (== ',') l in (read a, read b) findRoute :: (Int, Int) -> Set (Int, Int) -> Maybe [(Int, Int)] findRoute goal blocked = go Set.empty (Map.singleton (0, 0) []) where go seen paths | Map.null paths = Nothing | otherwise = (paths Map.!? goal) `mplus` let seen' = Set.union seen (Map.keysSet paths) paths' = (`Map.withoutKeys` seen') . foldl' (flip $ uncurry Map.insert) Map.empty . concatMap (\(p, path) -> (,p : path) <$> step p) $ Map.assocs paths in go seen' paths' step (x, y) = do (dx, dy) <- [(0, -1), (0, 1), (-1, 0), (1, 0)] let p' = (x + dx, y + dy) guard $ inRange ((0, 0), goal) p' guard $ p' `Set.notMember` blocked return p' dropAndFindRoutes goal skip bytes = let drops = drop skip $ zip bytes $ drop 1 $ scanl' (flip Set.insert) Set.empty bytes in zip (map fst drops) $ scanl' go (findRoute goal (snd $ head drops)) $ tail drops where go route (p, blocked) = do r <- route if p `elem` r then findRoute goal blocked else route main = do input <- readInput <$> readFile "input18" let routes = dropAndFindRoutes (70, 70) 1024 input print $ length <$> (snd . head) routes print $ fst <$> find (isNothing . snd) routes
Javascript
Reused my logic from Day 16. For part two I manually changed the bytes (
i
on line 271) to narrow in on a solution faster, but this solution should solve it eventually.https://blocks.programming.dev/Zikeji/c8fdef54f78c4fb6a79cf1dc5551ff4d
Haskell
Wasn’t there a pathfinding problem just recently?
Edit: Optimization to avoid recalculating paths all the time
Haskell with lambdas
import Control.Arrow import Control.Monad import Data.Bifunctor hiding (first, second) import Data.Set (Set) import Data.Map (Map) import qualified Data.List as List import qualified Data.Set as Set import qualified Data.Map as Map import qualified Data.Maybe as Maybe parse :: String -> [(Int, Int)] parse = map (join bimap read) . map (break (== ',') >>> second (drop 1)) . filter (/= "") . lines lowerBounds = (0, 0) exitPosition = (70, 70) initialBytes = 1024 adjacent (py, px) = Set.fromDistinctAscList [(py-1, px), (py, px-1), (py, px+1), (py+1, px)] data Cost = Wall | Explored Int deriving (Show, Eq) inBounds (py, px) | py < 0 = False | px < 0 = False | py > fst exitPosition = False | px > snd exitPosition = False | otherwise = True dijkstra :: Map Int (Set (Int, Int)) -> Map (Int, Int) Cost -> (Int, (Int, Int), Map (Int, Int) Cost) dijkstra queue walls | Map.null queue = (-1, (-1, -1), Map.empty) | minPos == exitPosition = (minKey, minPos, walls) | Maybe.isJust (walls Map.!? minPos) = dijkstra remainingQueue' walls | not . inBounds $ minPos = dijkstra remainingQueue' walls | otherwise = dijkstra neighborQueue updatedWalls where ((minKey, posSet), remainingQueue) = Maybe.fromJust . Map.minViewWithKey $ queue (minPos, remainingPosSet) = Maybe.fromJust . Set.minView $ posSet remainingQueue' = if not . Set.null $ remainingPosSet then Map.insert minKey remainingPosSet remainingQueue else remainingQueue neighborQueue = List.foldl (\ m n -> Map.insertWith (Set.union) neighborKey (Set.singleton n) m) remainingQueue' neighbors updatedWalls = Map.insert minPos (Explored minKey) walls neighborKey = minKey + 1 neighbors = adjacent minPos isExplored :: Cost -> Bool isExplored Wall = False isExplored (Explored _) = True findPath :: Int -> (Int, Int) -> Map (Int, Int) Cost -> [(Int, Int)] findPath n p ts | p == lowerBounds = [lowerBounds] | n == 0 = error "Out of steps when tracing backwards" | List.null neighbors = error "No matching neighbors when tracing backwards" | otherwise = p : findPath (pred n) (fst . head $ neighbors) ts where neighbors = List.filter ((== Explored (pred n)) . snd) . List.filter (isExplored . snd) . List.map (join (,) >>> second (ts Map.!)) . List.filter inBounds . Set.toList . adjacent $ p runDijkstra = flip zip (repeat Wall) >>> Map.fromList >>> dijkstra (Map.singleton 0 (Set.singleton lowerBounds)) fst3 :: (a, b, c) -> a fst3 (a, _, _) = a thrd :: (a, b, c) -> c thrd (_, _, c) = c part1 = take initialBytes >>> runDijkstra >>> \ (n, _, _) -> n firstFailing :: [(Int, Int)] -> [[(Int, Int)]] -> (Int, Int) firstFailing path (bs:bss) | List.last bs `List.notElem` path = firstFailing path bss | c == (-1) = List.last bs | otherwise = firstFailing (findPath c p ts) bss where (c, p, ts) = runDijkstra bs part2 bs = repeat >>> zip [initialBytes..length bs] >>> map (uncurry take) >>> firstFailing path $ bs where (n, p, ts) = runDijkstra . take 1024 $ bs path = findPath n p ts main = getContents >>= print . (part1 &&& part2) . parse
C#
using QuickGraph; using QuickGraph.Algorithms.ShortestPath; namespace aoc24; public class Day18 : Solver { private int width = 71, height = 71, bytes = 1024; private HashSet<(int, int)> fallen_bytes; private List<(int, int)> fallen_bytes_in_order; private record class Edge((int, int) Source, (int, int) Target) : IEdge<(int, int)>; private DelegateVertexAndEdgeListGraph<(int, int), Edge> MakeGraph() => new(GetAllVertices(), GetOutEdges); private readonly (int, int)[] directions = [(-1, 0), (0, 1), (1, 0), (0, -1)]; private bool GetOutEdges((int, int) arg, out IEnumerable<Edge> result_enumerable) { List<Edge> result = []; foreach (var (dx, dy) in directions) { var (nx, ny) = (arg.Item1 + dx, arg.Item2 + dy); if (nx < 0 || ny < 0 || nx >= width || ny >= height) continue; if (fallen_bytes.Contains((nx, ny))) continue; result.Add(new(arg, (nx, ny))); } result_enumerable = result; return true; } private IEnumerable<(int, int)> GetAllVertices() { for (int i = 0; i < width; i++) { for (int j = 0; j < height; j++) { yield return (i, j); } } } public void Presolve(string input) { fallen_bytes_in_order = [..input.Trim().Split("\n") .Select(line => line.Split(",")) .Select(pair => (int.Parse(pair[0]), int.Parse(pair[1])))]; fallen_bytes = [.. fallen_bytes_in_order.Take(bytes)]; } private double Solve() { var graph = MakeGraph(); var search = new AStarShortestPathAlgorithm<(int, int), Edge>(graph, _ => 1, vtx => vtx.Item1 + vtx.Item2); search.SetRootVertex((0, 0)); search.ExamineVertex += vertex => { if (vertex.Item1 == width - 1 && vertex.Item2 == width - 1) search.Abort(); }; search.Compute(); return search.Distances[(width - 1, height - 1)]; } public string SolveFirst() => Solve().ToString(); public string SolveSecond() { foreach (var b in fallen_bytes_in_order[bytes..]) { fallen_bytes.Add(b); if (Solve() > width*height) return $"{b.Item1},{b.Item2}"; } throw new Exception("solution not found"); } }